Spanning trees in hyperbolic graphs

نویسنده

  • Matthias Hamann
چکیده

We construct spanning trees in locally finite hyperbolic graphs whose boundary has finite (Assouad) dimension that represent their hyperbolic compactification in a good way: so that the tree has at least one but at most a bounded number of disjoint rays to each boundary point. As a corollary we extend a result of Gromov which says that from every hyperbolic graph with bounded degrees one can construct a tree (disjoint from the graph) with a continuous surjection from the ends of the tree onto the hyperbolic boundary such that the surjection is finite-to-one. We shall construct a tree with these properties as a subgraph of the hyperbolic graph, which in addition is also a spanning tree of that graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Notes on diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs

We present simple methods for approximating the diameters, radii, and centers of finite sets in δ-hyperbolic geodesic spaces and graphs. We also provide a simple construction of distance approximating trees of δ-hyperbolic graphs G on n vertices with an additive error O(δ log2 n) comparable with that given by M. Gromov.

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

A simple existence criterion for normal spanning trees in infinite graphs

A spanning tree of an infinite graph is normal if the endvertices of any chord are comparable in the tree order defined by some arbitrarily chosen root. (In finite graphs, these are their ‘depth-first search’ trees; see [3] for precise definitions.) Normal spanning trees are perhaps the most important single structural tool for analysing an infinite graph (see [4] for a good example), but they ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2016